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Abstract. The equilibrium configurations of a macroscopic Wigner crystal (2D system of interacting
charged balls, mechanically excited) and their evolution towards these equilibrium configurations are pre-
sented. In particular, the variations of the number of remaining dislocations at equilibrium according to the
number of particles, confinement shape and temperature have been extensively explored. One important
result is the exhibition of the rapid creation of an unique grain boundary and its shrinkage during the

annealing.

PACS. 68.65.-k Low-dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic
properties — 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic,

and nanoscale systems

In the past years, many significant studies have been
dedicated to 2D systems of interacting particles. Among
them, we can mention systems like vortices in superfluid
He* [1,2], electron dimples on a liquid helium surface [3],
vortices lattice in mesoscopic superconductors [4], elec-
tronic configurations in semiconductor quantum dots [5],
vortices in a Bose-Einstein condensate [6], trapped ions
cooled by laser techniques [7], dusty plasma [8]. All of
these experiments can be modelized by a system of par-
ticles interacting with an electrostatic potential. On the
other hand, many numerical works have been also pub-
lished to describe the ground and metastable configura-
tions of such systems. Since an early theoretical study
performed by Thomson in order to describe the atomic
structure [9], various studies have been done involving
coulombic [10-13], screened coulombic [13,14], or loga-
rithmic interacting potential [9,13,15]. The influence of
the confinement potential has also been explored [11,13].

In this work, extending our previous results to meso-
scopic systems [16,17], we present the behavior during its
way towards equilibrium configuration of a large elastic
crystal consisting in electrostatically-interacting charged
balls of millimetric size freely moving on an horizontal sur-
face, the number of balls being larger than 1000 and the
temperature being simulated by a mechanical shaking of
the confinement cell. Underline that these studies are per-
formed at room temperature with macroscopic particles
which allows experiments significantly easier than those
performed on others elastic systems.

® e-mail: saintjea@gps. jussieu.fr

After a rapid description of the experimental set up
in Section 1, we present rapidly the observed equilibrium
configurations of this 2D elastic system in Section 2. How-
ever, the aim of this article is the presentation in Section 3
of the dynamical behavior of topological defects which is
an important result, both from a fundamental point of
view as well for more applied aspects of material science.
Throughout the annealing process, the initial topological
defects organize themselves by local motions and recom-
bining in order to reduce the initial disorder. We will focus
our discussion on this evolution which leads the system
from its initial disordered state to a regular macroscopic
Wigner crystal reached at equilibrium.

1 Experimental methods

The experimental set up has been previously de-
scribed [16]. Basically, the system is constituted by a
monolayer of about a thousand metallic balls (Fig. 1).
The balls are placed between the electrodes of an horizon-
tal capacitor and move directly over the bottom capacitor
electrode. The potential between the electrodes is noted
Ve. Moreover, the balls are laterally confined inside an
isolated metallic frame introduced between the capacitor
electrodes; the potential V. applied on this frame can be
varied in order to modify the electrostatic confinement. In
the experiments described here we have used V, =V, = V.
Experiments were conducted in various shaped frames.
Whatever these shapes, it always exists for a large sys-
tem (N > 1000) a central part of the crystal at equi-
librium which is an hexagonal array. The higher the cell
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Fig. 1. Experimental set up.

dimension, the larger the central monocrystal size. Thus,
taking advantage of this effect, we chose generally an
hexagonal-shaped frame to optimize the size of the pat-
terns with triangular symmetry. In the experiments pre-
sented there, the size of the frame edge is 400 mm, allowing
inter-particle distance about 2 mm.

When the potential V' of a few thousands volts is ap-
plied between the capacitor electrodes and maintained
over the experiment duration, the balls get instanta-
neously a mono-disperse charge and repel freely each other
to spread in the whole available space. The annealing pro-
cess is then engaged. In order to obtain reproducible ar-
rays and relevant data, the following procedure is system-
atically used: the cell is continuously shaken using two
independent loudspeakers supplied by two white noises of
range 0-200 Hz. This shaking produces random motion
of balls which simulates a thermal Brownian motion. In
order to check this point, we have studied the transition
between the stable and the excited states of small systems
(N < 10) and verify that the Boltzmann law is satisfied (a
complete presentation of these results is in preparation).
We can then conclude that shaking can be associated to an
annealing performed at a constant effective temperature.

In order to record images of the balls arrays in real-
time, a CCD camera is positioned over the top capacitor
electrode which is a transparent conducting glass. This
camera is connected to a computer, allowing us to lo-
cate the balls centers by finding peaks of intensity for
each image. Once the center locations are known, differ-
ent relevant quantities are extracted. In order to iden-
tify the short-range order, Voronoi constructions (patterns
formed by the perpendicular bisectors of all segments join-
ing neighboring balls) are performed in order to char-
acterize the obtained arrays and their defects. In this
representation a regular site corresponds to an hexago-
nal cell whereas the defects correspond to non hexagonal
polygons. Let us finally indicate that the long-range or-
der could also be characterized by the translational and
orientational correlation functions, however this article is
stressed on the local order and we shall not discuss these
aspects here.

2 Description of equilibrium configurations

Just after the application of the potential V between
the electrodes, when the annealing begins, the system is

strongly disordered. This initial state is far from the equi-
librium. Shaked at slow effective temperature (defined by
a ball displacement Ar/a < 0.05 where a is the interball
distance), the system explores its configuration space in
order to find its minimum of energy. According to the ex-
perimental conditions the ground state is reached after a
time varying from a few minutes to several hours. What-
ever the experimental set up, this final state corresponds
to a roughly regular lattice with some remaining topo-
logical defects. In systems with short range inter-particle
interaction like colloids systems, the description of the ge-
ometrical structure in terms of nearest neighbor bonds
has demonstrated its physical sense; we suppose here that
this procedure is also relevant in our case in which pre-
vious studies have suggested a long range inter-particle
interaction [16,17].

In this frame, the creation of a point defect involves
the breaking of bonds and the creation of miscoordinated
particles. In a perfect hexagonal array, the simplest de-
fect is a disclination which corresponds to 5 or 7 fold sites
which can be seen as a removed or added 7/3 wedge in a
perfect hexagonal crystal. However, isolated disclinations
with opposite topological charge can attract each other via
their strain field to form dislocations [18]. The edge dis-
location (5-7 fold disclinations pair) which corresponds
to a system of two additional half extra rows terminat-
ing on the 7-fold site is the most frequent defect in the
case of coulombic inter-particle interaction [19]. Moreover
isolated dislocations can interact and move in order to
form complex defects. Some of these arrangements pre-
serve both translational and orientational order and are
associated to a slight distortion of the hexagonal lattice
free of defects. Thus pairs of dislocations with opposite
Burger’s vectors are virtual defects. Associated to slight
distortion, their energy cost is very low and they can eas-
ily be thermally excited and are frequently observed [18].
By contrast, more complex arrangements as lines of de-
fects called “grain boundaries” are also observed to form
polycrystalline systems (we return to this point in Sect. 3).

The number of remaining defects in the system de-
pends on the symmetry of the confinement frame, the
number of confined particles and the effective temperature
since they are either resulting from the stress imposed by
the confinement or thermally-induced. In a circular frame,
these defects originate from the incompatibility between
the symmetries of the ordered triangular lattice and those
of the confinement which forbids a perfect hexagonal crys-
tal and leads always to lattice defects whatever the num-
ber of balls. From the geometrical point of view, the irre-
ducible number of disclinations in this case is determined
by the Euler’s theorem and six disclinations are required
to adapt the triangular and the circular symmetries in
2D system. Experimentally the defect number is actually
larger than 6 but can be reduced by annealing procedure.
This result has been confirmed numerically for a system of
electrons, the authors [20] indicating that these defects are
inherent to the circular confinement and that their number
cannot be reduced beyond a minimum value. By contrast,
the symmetries of an hexagonal frame are compatible with
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Fig. 2. Equilibrium configuration of a crystal constituted by
a magic number of balls, N = 1027.

those of a triangular lattice and offer the best opportuni-
ties in order to optimize the exploitable size of the ob-
served crystal. Thus in the following we retain this shape
and we discuss results obtained with it.

In an hexagonal frame, perfect confined crystal can be
expected. However, in this case, the number of residual
dislocations strongly depends on the number of the con-
fined balls. For “magic numbers”, N =1+ 3p(p—1) [12],
the confined packing is in agreement with an hexagonal
symmetry and the crystal can be then defect-free at low
temperature. Figure 2 is an example of such a crystal ob-
tained for N = 1027. In order to evaluate the transla-
tional and rotational orders of this crystal, we have cal-
culated the translational and rotational pair correlation
functions associated to the particles positions and com-
pared them to those evaluated for an finite ideal triangular
lattice with the same size. The comparison presented in
Figures 3a and 3b proves the complete agreement between
the ideal array and the experimental one. These correla-
tion functions exhibit well defined characteristic features;
in particular the high first peak which corresponds to the
nearest-neighbors indicates that the lattice parameter is
well defined. By contrast, for non-magic numbers, the in-
compatibility of boundaries conditions with the formation
of a regular pattern results in a small number of disloca-
tions which remain whatever the annealing duration. This
behavior is well described by Figure 4 which presents the
mean number of 5-fold and the 7-fold sites observed at
equilibrium in systems constituted of various balls num-
ber. For each number, the data are carried out from
five equivalent systems annealed during 30 mn. Under-
line that, in order to obtain a coherent set of comparable
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Fig. 3. Correlations functions obtained for a N = 1027 balls
crystal; (a) translational correlation function, (b) rotational
angular correlation function. The solid lines correspond to the
correlation function obtained for an perfect crystal with the
same size.
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data, the amplitudes of position fluctuations (noted Ar)
have to be kept constant whatever the number of balls;
so we have modified the effective temperature T" accord-
ing to the number of balls in order to maintain the ratio
of E/kT constant where kT is the effective thermal en-
ergy and E the electrostatic energy which varies with the
number of confined balls via the inter-ball distance. This
curve exhibits minima for the magic number system and
maxima of defects for systems constituted with a number
of balls chosen far away from two consecutive magic num-
bers. These variations can qualitatively be interpreted. Let
us start from a magic number for which the defect num-
ber is minimum and increase progressively the number of
confined balls by adding new balls. Initially, this addition
is associated to an increase of the number of dislocations,
located near the frame edge. These added balls result in
apparition of new extra rows in the array. At the begin-
ning, these rows are short since the added ball number is
small. As this number increases, we observed that the sys-
tem prefers to elongate the extra rows rather than create a
set of new dislocations. This is confirmed by the evolution
of the mean length L of the extra rows. For instance, be-
tween the two consecutive magic numbers 1027 and 1141,
the add row length L corresponding to N = 1050, 1063,
1087 is respectively 8.9, 10.4, 14.6 lattice spacing units.
This preference explains the observed decrease of the per-
centage of dislocations as the ball number NV increases. We
can also remark that the number of 5-fold sites is generally
higher than those of the 7-fold and the relative quantities
of 5-fold increases slowly whereas the 7-fold ones increases.
Even if we cannot explain these results, it is in agreement
with the numerical studies performed for smaller systems
constituted by a few hundred of balls [21].

Lastly, in order to evaluate the respective quantities of
defects due to the confinement stress with respect to those
thermally-induced, we studied the equilibrium ground
configurations reached for different values of the effective
temperature. At high temperature (0.1la < Ar < 0.2a),
the array contains a large number of free mobile disloca-
tions or dislocations arrangements and isolated disclina-
tions have seldom been observed. At lower temperature,
dislocations are still observed however their number and
their mobility are smaller. Let us indicate that this de-
crease is regular and efficient up to a very low temperature
(Ar = 0.05a), at which the number of residual dislocations
then remains constant. At these low temperatures, this ir-
reducible number only depends on the number of confined
balls and on the symmetry of the frame.

In order to complete these qualitative results, it is con-
venient to precise the final location of the remaining dis-
locations at very low temperature. Experimentally, this
question is very sensitive to the annealing process. Some
generic behaviors, nevertheless, can be exhibited. Accord-
ing to the nature of the inter-ball interaction and to the
shape of the confinement potential, various different sit-
uations have been observed. When the balls move on the
bottom electrode of a capacitor and are confined in an
hexagonal frame, the remaining dislocations are very mo-
bile. These conclusions result from the observations of

“mean crystals” obtained by superposing the positions of
balls recorded during the annealing: in this case, the balls
in sites appear as stable balls whereas the balls near the
dislocations are much mobile and appear as diffuse hal-
low in the mean crystal. The positions and the mobility
of the residual dislocations are very different for a circular
frame. In this case, the residual dislocations are roughly
static and located very close to the confinement surface,
in the few outer shells of balls. Lastly, let us indicate that
when the charged spheres are free to move over an insu-
lating surface and are confined in a circular frame, the
center and the edge of the crystal are free of defects when
equilibrium is reached, the residual defects being mostly
located inside the system where they seem to be trapped.
This kind of behavior is observed whatever the number of
balls.

Before to describe the relaxation of these topologi-
cal defects, we can give some comments about equilib-
rium state. From the theoretical point of view, the ob-
served crystalline state obtained when the equilibrium is
reached is in agreement with the triangular array with
quasi long range order predicted as the most stable struc-
ture for an infinite 2D system of long range interacting
particles [19,22]. In such isotropic elastic 2D systems, a
discussed scenario of two phase transitions assisted by de-
fects has been proposed by Kosterlitz and Thouless [23].
In this model, a perfect quasi-long-range translational or-
der, without defect or with virtual dislocations [24], can
be observed at low temperature. When the temperature
increases, this translational order is broken when the tem-
perature reaches T, but the orientational correlations are
not, destroyed and persist until a second temperature T,
at which the system gets in its liquid phase. The phase
between T, and T; is named the “hexatic phase”. In our
system, this scenario of two successive phase transitions
has never been observed. In particular the melting of the
crystal corresponds to a strong and rapid increase of the
dislocations number with the temperature. The dissoci-
ation of the dislocations in isolated disclinations has not
been observed. Arguments of different nature found in the
literature can be used to explain this result. The first one
suggests that the finite dimensions of a system would re-
sult in a shift of the solid-hexatic temperature in order to
join the hexatic-liquid transition [25]. On another hand,
the literature suggests that in the case of 2D system with
long range interacting particles, the temperature T, could
be very high. Indeed, if we retain the common assumption
that the expression of the critical temperature T, obtained
in the K.T. theory could also describe the melting transi-
tion for 2D system of long range interacting particles, we
obtain an infinite T, since this temperature is proportional
to the Lamé coefficient A of the system which is infinite for
a 2D electron solid [19]. Underline nevertheless that this
common assumption is not obvious since the K.T. sce-
nario has been developed only for short range interaction.
Similar effect could be expected in our system for which
the inter-ball interaction seems to be long range interac-
tion as it can be inferred from our previous experimental
results [16].
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In this framework, the absence of transition could re-
sult from an increase of the critical transition tempera-
tures, the T, transition being the only one which could be
observable as suggested by the small number of isolated
disclinations observed at the experimental effective tem-
perature. An alternative argument has been recently pro-
posed in a theoretical study [26] which suggests that in the
case of a system of particles interacting via a logarithmic
potential the system would remain liquid at any tempera-
ture. However the correlation length varying as (1/7)/2,
a system with finite size would appear as a regular array,
with a triangular ground state and a very small number
of disclinations at low temperature. These comments show
that the origin of our observation is not yet clear, let us
indicate however that the existence of K.T. transition for
systems with short range interaction like colloid systems
is also experimentally contested [27].

Our results obtained about the dislocations locations
are in agreement with those predicted in numerical stud-
ies. For a circular confinement potential, Ying-Ju Lai
et al. [21] have numerically shown that for the case of log-
arithmic interaction the array has a quasi uniform pack-
ing density distribution and the residual defects are es-
sentially located in the outer part of the system, near
the confinement frame. On the other hand, in the case of
coulombic potential, all the dislocations are observed in a
ring of width over a few inter-ball distance from the con-
finement edge and roughly form a stable grain boundary
of connected dislocations; the inner and outer balls be-
ing respectively located on a quasi triangular lattice and
on a bend triangular lattice. These results were numeri-
cally confirmed by Bedanov et al. [11]. More precisely, the
defects do not come close to the confinement frame. In-
directly, this qualitative agreement confirms our previous
conclusions about the nature of the inter-balls interaction.
It seems then that the inter-balls interaction is coulombic
or logarithmic whether the balls are placed on an an in-
sulator or an conductor [16].

Lastly, the large defect mobility observed in the case
of hexagonal confinement could be associated with this
particular geometry. Indeed, in this case the repulsive
elastic interaction between a dislocation and its image in
the frame is logarithmic since the hexagonal confinement
stands for an infinite crystal; in the same time, the real
electric charge associated to this dislocation interacts with
its electrostatic image also by a logarithmic interaction.
The distance dependence of these two interactions being
identical, the dislocations cannot find a location corre-
sponding to a minimum of energy and then can move in
the whole array. This particular situation is characteristic
of the hexagonal confinement and falls down as soon as
the confinement presents other symmetry. This point has
to be clarified.

3 Grain boundary dynamics towards
the equilibrium

In the previous section, we described the ground config-
uration observed when the equilibrium was reached. Let
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Fig. 5. Evolution with annealing time of the number of dislo-
cations in the case of magic number system. The error bar is
less than 1%.

us now describe the array evolution during the annealing
process. In particular, we stress the dislocations behavior
and their reorganization leading the system from an uni-
form topological defects density to its final regular ground
state. We restrict our discussion to results obtained with
a system containing a magic number of balls free to move
on a conductor and confined by an hexagonal frame in
order to obtain a final state free of defects.

In plastically deformed crystals, the accumulation, mo-
tion and interaction of a large numbers of dislocations
give rise to complex dynamics which results generally in
dislocations spatial patterns. In our case, this evolution
consists schematically in two successive stages which can
easily be identified by observing the evolution of the num-
ber of 5-fold and 7-fold sites with the annealing time. In
Figure 5 we present this evolution obtained from different
runs performed on a system with N = 1027 but similar
lots can be observed for any magic number. During the
first tens of seconds, we observe a very fast decrease until
over 50% of the number of 5-fold sites followed by a slower
reduction for longer shaking time. The quasi-totality of the
dislocations vanishes after an annealing time about 500 s.
These two different characteristic times suggest two differ-
ent mechanisms resulting in the reduction of the defects
number. More precisely, when the electrification poten-
tial V is applied between the electrodes the balls being un-
shaken, the initial array is characterized by a large quan-
tity of defects randomly dispersed. At this initial stage, the
system is very disordered, largely far from its final regular
configuration and its stored energy is associated to elas-
tic deformations due to the defects. The majority of these
observed defects are dislocations; we are thus allowed to
suppose a very expensive energetic cost for isolated discli-
nations. This high cost could be due to the confinement
and the range of the interaction since isolated disclinations
can be observed in short range interacting colloid systems.
Thus, in order to minimize this deformation energy, discli-
nations with opposite topological charge strongly attract
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each other and quasi-instantaneously form dislocations
which give the main contribution to the stored energy.

However, number of these dislocations are topologi-
cally useless and the small stored energy seems sufficient
to induce the dislocations movement observed at the first
times of the annealing (t < 20 s). Indeed, the internal
stress experienced by a given dislocation depends on the
configuration of the other dislocations in its surrounding;
80, in order to reduce the deformation energy, the disloca-
tions are very rapidly eliminated after a short annealing
time either by evacuation through the crystal edge, or an-
nihilation process of dislocations with opposite Burger’s
vectors or reorganization after glide or climb processes.
Generally, dislocations easily move in the glide direction
perpendicular to the direction joining the 5-7 fold discli-
nations but less easily in the climb direction parallel to this
direction because climb involves absorption and emission
of vacancies and interstitials while glide does not. How-
ever in our case the dislocations movement is more free
since the energy associated to dislocation climb is small
as suggested by the increase of add row lengths. Moreover,
our system of balls is confined and is then equivalent to
a bi-crystal constituted by an elastic array embedded in
an rigid lattice characterized by infinite elastic constants;
s0, due to the repulsive image force of dislocation on the
frame edge, the glide or climb are equivalent and their en-
ergies can be considered as roughly equal. Thus, as the
movement of the dislocations is easy and isotropic, the
recovery is efficient.

During the beginning of the annealing (¢ < 20 s), the
isolated dislocations move and interact to rapidly form
short dislocations lines which organize themselves in or-
der to constitute continuous grain boundaries (Fig. 6).
The system appears then as polycrystalline, each crys-
tallite containing roughly 200 balls. Inside these grain
boundaries, the arrays are triangular lattices but misori-
entated with respect to the confinement axis; by contrast,
the outer grain array corresponds to a regular triangular
lattice oriented along the axis of the confinement frame.
Let us indicate that we never observed the direct recrys-
tallization characterized by the growth of a grain (germ)
in the disordered system. Such a “polyganized” phase,
well-known in metallurgy, is generally very stable, the
boundaries corresponding to small misorientation. How-
ever, in our case, surely due to the confinement, these
grain boundaries remain largely misoriented and then are
unstable. So they move in order to reorganize themselves
to form a unique grain boundary which is reached after
a few tens seconds of a slow annealing. During this an-
nealing, we systematically observed a faster reduction of
domains with the larger misorientation (with respect to
the frame orientation). In particular, when two neighbor
domains have the same surface but different misorienta-
tions, the less misoriented is favored, its surface increases
whereas the surface of its neighbor reduces. This indicates
that the energy associated to the boundary depends on
the relative misorientation of the domains. Moreover, for
two adjacent domains of different sizes but with the same
misorientation, the boundary moves in a sense which ex-
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Fig. 6. Evolution with time of the grain boundary. The dis-
locations are visualized by attributing special colors to such
defects (pentagons are filled in dark grey, and heptagons in
bright grey).

tends the larger domain. This phenomenon looks like the
“coarsening phase” well-known in metallurgy; however, on
the contrary to the usual coarsening behavior, our system
prefers to eliminate the grains with small curvature radius
and to increase the grain surface. These two observations
suggest that in our confined systems, the boundary energy
depends not only on the dislocations line length and its
orientation but also on the whole surface of the domain.
This effect could be due to the long range character of the
interball interaction. After this initial reorganization, the
system appears as constituted by an unique grain, roughly
circular, embedded within a large parent grain well ori-
ented with respect to the confinement frame. Let us in-
dicate that whereas this unique grain boundary is always
observed in our systems, they are not observed in systems
with short range interaction [28]. Once more, this suggests
that this dislocation pattern depends on the range of the
interaction.

From these observations we can conclude that the first
stage observed in Figure 5 corresponds to the time, about
20 s, required to form this unique grain boundary. The
short duration of this initial process indicates a high mo-
bility of the dislocations associated to small energetic bar-
riers. This time is correlated to the friction of the balls on
the surface as it is confirmed by experiments performed on
system shaken before the application of the potential V.
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In this case, the activation energy is such that the inter-
mediate dislocations short lines cannot be observed and
that the configurations with dislocations grain boundary
are apparently instantaneously obtained.

The system reaches then the second phase of its evo-
lution. As the annealing is carried on, a shrinkage of the
internal grain can be observed: the unique grain boundary
moves in order to drive the boundary towards its center
of curvature resulting in a perfect crystal without defects.
Figure 6 presents this evolution. Since the characteris-
tic dimensions of the grain boundary are always larger
than the dislocation core and since the width is small, the
boundary evolution can be analyzed in the framework of
the elasticity theory which means considering the bound-
ary as a line. For an infinite 2D system, a grain bound-
ary is then characterized by two independent parameters:
0 which describes the angular disorientation between the
two domains, and the relative orientation a of the grain
boundary with respect to a reference axis [18]. The en-
ergy per length unit of the grain boundary, noted -y, has
been derivated in the case of short range interacting par-
ticles [29]. However, Fisher et al. have shown that the
derivated expressions for v are also valid in the case of
2D electron crystal. Thus we can then suppose that this
approach is adapted to our case [19].

In these elastic theories, when the disorientation is low,
a grain boundary is a sequence of dislocations regularly or-
ganized along a line. In this geometry, the stress field of
a dislocation is annihilated by those of its two neighbors.
Thus the energy stored in such a grain boundary is small
and the linear defect configuration is very stable. For an
infinite crystal, this energy is given by v(8) = y00(A—1n6)
where 79 and A are constants. By contrast, when the two
arrays are largely rotated one with respect to the second,
there exist sites in coincidence, the line joining these co-
incidence sites lattice constituting a high angle boundary.
With two hexagonal arrays the simplest energetically fa-
vored grain boundary corresponds to an angle of 38°. The
corresponding stored energy cannot be evaluated analyti-
cally since some atoms near the coincidence grain bound-
ary could be very closed and have to relax. The resulting
energy is generally high and the boundary is unstable.
In our confined systems the situation could be different.
In particular, the distinction between these two kinds of
extended defects is not obvious. Indeed, the interaction
between the dislocations and the frame edge does not al-
low the development of a straight boundary grain. So it
would be essential to introduce this confinement of the
grain boundary in the evaluation of its energetic cost. A
very simple model of this shrinkage can be built since a 2D
hexagonal lattice may be consider as an isotropic elastic
array. According to an assumption recently proposed by
Kobayashi et al. [29] to describe the dynamics of the grain
boundary in a circular bicrystal, let us suppose that the
energy -y is constant and positive since the grain boundary
moves through its curvature center inducing the decrease
of the length of the grain boundary. The grain bound-
ary being roughly circular, thus a simple one dimensional
axisymmetric model can be used. If we assume an over-
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Fig. 7. Evolution of the grain boundary length with the an-
nealing time.

damped motion of the grain boundary, the friction force
is then linearly proportional to the grain velocity which
is proportional to the product of the grain mobility M by
the local force applied F'. The mobility is thermally acti-
vated whereas the local force results from the curvature
of the grain boundary and is equal to F' = 2v/R where R
is the radius of the grain

dR/dt x 2v/R.

If we consider v as independent of R, the solution of this
equation gives R(t) equal to (R3 —4k~yt)'/? where Ry is the
initial radius and k a constant. Our observations do not
seem in agreement with this behavior. In order to compare
our data, we have evaluated R(t) by measuring the vari-
ation of the length of the grain boundary with time and
considered that R(t) is proportional to this length as for a
circular boundary. A complementary estimation have been
done by measuring the surface inside the grain boundary
and taking the square root of this surface. The two esti-
mations are similar. In Figure 7, we present the variations
of R(t) obtained by the first estimation. On this curve,
R(t) looks more like a linear function of ¢. This linear de-
crease of the grain boundary length with the annealing
time could be explained by an energy 7 proportional to
the curvature radius or to the boundary length, which is
equivalent in the case of a circular boundary. The origin
of this dependence could be associated to the long range
of the inter-particles interaction. This assumption could
be validated by the fact that the shrinkage of an unique
grain boundary has not been observed in systems with
short range interaction as colloids or magnetic bubbles.

4 Conclusion

The equilibrium configurations of a macroscopic Wigner
crystal constituted of a 2D system of interacting charged
balls mechanically excited by loudspeakers have been
studied. In particular, we have extensively explored the
variations of the number of dislocations remaining when
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the equilibrium is reached according to the number of
particles, confinement shape and temperature. We have
shown that for systems constituted with a magic number
of balls, the array at equilibrium is a triangular lattice
without defects, excepted those thermally excited.

The evolution of the array of a macroscopic Wigner
crystal towards its equilibrium configuration has also be
studied. One important result is the exhibition of the
rapid creation of an unique grain boundary and its shrink-
age during the annealing. The long range interaction be-
tween particles could contribute to this particular behav-
ior, never observed in others 2D systems.
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